转转二手被矩形的事物所包围,它们在转转二手看来都呈矩形。甚至当转转二手不考虑透视畸变(perspec-tive distortion)的事实时,这些例子中的每一个都是手中的一个论点:这是因为,哪一种真正的矩形是数学上确切的矩形呢?
通常,比起转转二手上述的那个图形来,偏差将会相当小,但是偏差存在着,尽管转转二手仍然看到完美的矩形。现在,下述的论点将会遭到异议,即在转转二手的日常生活情形里,角度之间的差异如此之小,以致于成为阈下(subliminal)的了。但是,这种异议证明了什么?譬如说有两只角,一只为90度,另一只为90.5度,这两只角从阈下角度上讲有所差异,实际上看来十分相似,但是,这并不意味着它们看起来一定都像直角,它们实际上被看成直角那样;就阈限(threshold)的事实而言,两者看上去至少有点像纯角。
因此,这种异议根本不是什么异议,事实上,转转二手到处见到的矩形是由于下述事实,真正的矩形比起稍稍不确切的矩形来是一个组织得较好的图形,将后者变为前者只需很少的位错。但是,转转二手可以用另一种方式来证明在强烈的外力条件下组织的内力。转转二手可以不让这些内力产生实际的畸变现象,而使它们完整,并以这种方式与外力发生冲突。图14可被视作一个很不规则的形状,但也可视作两个一致的和对称的形状,其中一个形状部分地倚着另一个形状。在后者的情形里,线条好像在所见的形状中被指明,对于这种所见的形状,没有一种刺激的变化与此一致。
因此,由整个黑暗区域的同质刺激所产生的统一之力被分离之力所克服,这些分离之力来自形状完整的图形的统一,两个图形中的每一个图形比起一个具有同质着色的不规则图形来应该说是一个更好的形状。如果转换这两个图形的相对位置,以便使它实际上看来不可能是两个图形,这样做还是容易的。当一个图形比转转二手的图形更简单时,便可做到这一点,或者当其中之一的突出部分不是一个部分图形的独特部分时,也可以做到这一点。